
An Automatic Trace Analysis Tool Generator

for Estelle Specifications

S. Alan Ezust and Gregorv. Bochmann

D6partement d’informatique et de recherche op&ationnelle

Universit6 de Montr6al

Montr6al, QC, Canada H3C 3J7

E-mail: {ezust ,bochmann}@iro. umontreal. ca

Abstract

This paper describes the development of Tango, an auto-

matic generator of backtracking trace analysis tools for single-

process specifications written in the formal description lan-

guage, Estelle. A tool generated by Tango automatically

checks the validity of any execution trace against the given

specification, and supports a number of checkkg options.

The approach taken was to modify an Estelle-to-C++ com-

piler. Discussion about nondeterministic specifications, mul-

tiple observation points, and on-line trace analysis follow.

Trace analyzers for the protocols LAPD and TPO have been

tested and performance results are evaluated. Issues in the

analysis of partial traces are also discussed.

Keywords: Estelle, Trace Analysis, Protocol Conformance

Testing, Formal Description Techniques

1 Introduction

Test result analysis involves analyzing with respect to a spec-

ification, the observable behaviour of an IUT (Implementa-

tion Under Test) in response to a certain number of executed

test cases. Usually, the only observable behaviour of an im-

plementation is a “trace”, or a log of the interactions sent

through the IUT’S service access points, hereafter referred

to as interaction points, or IPs for short. When only the

observable interactions are used in test result analysis, this

kind of testing is called “black box” testing. An oracle is

needed to determine if each trace could have been generated

by an implementation which behaves as specified.

A trace analyzer provides the function of this oracle

and determines, usually by simulation, whether a trace is

valid with respect to a formal specification. An invalid trace

is a trace which contains an interaction which could not have

been generated by an implementation which follows the spec-

ification.

Below are some other situations where a trace analyzer

could be useful.

c A deterministic implementation which is accepted as

“correct” can be used as a an operational specifica-

tion [8] during the development of a formal specifica-

Permisslon to make digital/hard copies of all or part of this material with-
out fee is granted provided that the copies are not made or distributed
for profit or commeraal advantage, the ACM copynghtkerver
notice, the title of the publication and its date appear, and notice is given
that copyright is by permission of the Association for Computing Machinery,
Inc. (ACM). To copy otherwise, to republish, to post on servers or 10
redistribute to hsts, requires prtor speclflc permission and/or a fee,

SIGCOMM ’95 Cambridge, MA USA
0 1995 ACM 0-89791 -711 -119510008...$3.50

●

b

tion, which then can be used later to generate imple-

mentations on other platforms automatically. In this

situation, the formal specification can be tested for

conformance to the operational specification. Since the

operational specification is deterministic, it also can be

viewed as a trace analyzer.

It may be necessary to take two human-generated im-

plementations which are on different platforms and

test the interoperability between them, in which case

a trace analyzer could act as an “arbiter” and provide

diagnostic information about the behaviour of each im-

plementation.

A specification which is acceDted as correct is used as a

tes; verdict checker, to deter-mine if the test case result

(pass or fail) attached to a particular branch of the test

case is correct with respect to the specification.

While the specification language, and the trace analysis

technique described in this paper, are both applicable to

other areas of software testing, our interest is primarily in

the area of communication protocols.

Most formal specifications of commonly used protocols

are to some degree, nondeterministic. This is because t yp-

ical protocols are expected to react to external events, and

it is possible that multiple events which require responses

may occur simultaneously, or so close together that they

appear simultaneous. Often, the actual order in which such

events are handled is not specified, unless certain events have

a higher priority than others. Piggybacking response mes-

sages, where a single message may be a response to more

than one event, is another common source of nondetermin-

ism in specifications.

A trace analyzer for a nondeterministic protocol speci-

fication may need to try multiple possible execution paths

before determining the validity of a trace, so trace analysis is

not quite as straightforward as protocol simulation. Further-

more, there are additional concerns when developing a trace

analyzer which operates on-line, as opposed to one which is

running in batch mode. Analyzing the timing of events for

conformance to a specification introduces a whole class of

difficulties as well.

This paper presents the requirements and the develop-

ment of a trace analysis tool generator for Estelle specifica-

tions. Estelle [10] is a specification language standardized by

the 1S0 and is based on a model of communicating Extended

Finite State Machines (EFSMS). Estelle may be viewed as a

set of extensions to Pascal which enable the specification of

non-deterministic concurrent communicating processes, or

175

mod u les, The principles and difficulties of trace analysis

discussed in this paper apply as well to trace analysis with

respect to specifications written in SDL [1].

The approach taken was to start with an Estelle-to-C++

compiler called Dingo [17], which generates an executable

imdementation of a m-otocol s~ecification. We added rou-

tines to enable these generated ‘implementations to perform

a state-space search on all possible execution paths which

consume the inputs and produce the outputs provided in a

trace file.

The result of our work, Tango, also known as the Trace

ANalysis GeneratOr, does just that. It generates a trace

analysis tool based on a single-module Estelle specification,

which can analyze traces using relatively small amounts of

memory and CPU time. Almost all Estelle programming

constructs (with the exception of delay clauses and primi-

tive functions and procedures) are supported by Tango.

1.1 Related Work

Several trace analyzers have been written forspecific proto-

COIS such as SNA [5], MAC [13], Class 4 Transport [11] and

X.25 [14], but products such as these were, for the most part,

developed by humans, had to be tested very thoroughly be-

fore they were put touse, and were not easily adaptable for

use on other protocols.

Most of the above examples are trace analyzers con-

structed for a deterministic specification. In the case of

deterministic s~ecifications. anv correct implementation can

beusedfor tra~e analysis: lti~sufficient t~apply the input

interactions of the trace to the implementation and compare

the output interactions of the trace with the output pro-

ducedbv theimrJementation: the trace is valid if. andonlv

if, they are the same. This simple approach is not possible

for nondeterministic specifications.

A trace analysis tool for nondeterministic specifications

written in LOTOS [4] has been described in [2]; it uses

a state-space exploration approach similar to the one de-

scribed in thk Da~er. Like Tarwo. it concentrates on the

(possibly nonde~e~ministic) contr~l ‘flow of the specification

and assumes (except for simple value generation by internal

interactions) that the data parameters of output interactions

can be (deterministically) deduced from the input parameter

values.

Another approach is described in [12, 20] where the data

part is handled through symbolic execution. Applied to Es-

telle specifications, this approach requires that the specifi-

cation be manually transformed into Estetle. g, a subset of

Estelle which does not support state lists, dynamic memory,

procedures or functions, and the data structure definitions

must be defined in ASN. 1, Given a specification in Estelle.y,

TESTVAL generates a set of paths satisfying the input and

output messages in the test case, and symbolic evaluation is

used to detect and delete infeasible paths in that set. The

trace fails if the set is empty. This approach is quite elegant

from a theoretical standpoint, but certain aspects of the ini-

tial transformation are not automated, making the genera-

tion of a trace analyzer for an arbitrary Estelle specification

less straightforward.

SPIN [9], a verification tool for specifications written in

Promela, performs state space exploration on systems of par-

allel processes, supporting very advanced techniques for re-

ducing the search space/time. SPIN is primarily a specifica-

tion validator, and from what we have gathered, is not yet

used specifically for protocol trace analysis in conformance

1.2 Pet/Dingo

Pet/Dingo, developed at the National Institute of Standards

and Technology (N I ST), is the second NI ST Est elle compiler.

The first one, called the NBS Prototype Compiler [18], gen-

erated C code and simulated paralle~ism through a process

scheduler. Pet/Dingo is a major step forward, in that it takes

an object-oriented approach to specification generation and,

for modules which are supposed to be implemented as in-

dependent processes, Dingo generates code for independent

processes which communicate by sockets (if they are running

on the same computer) or Remote Procedure Calls (if they

are running on different computers), and synchronize with

each other as specified.

PET, or the Portable Estelle Translator, is written in

C++ and uses Bison. Bison is a parser similar to Unix’s

yacc, except it has some enhancements in error recovery,

and it is produced by the Free Software Foundation.

Pet performs a syntactic and semantic analysis of the

Estelle specification, and if the specification has no compiler-

detectable errors, Pet outputs an object-oriented static model

of the specification.

DINGO, or the Distributed Implementation GeneratOr,

can be thought of as the second pass in the code-generation

process. The Dingo executable reads the output of Pet into

memory, organized as a tree of objects. By traversing thk

tree of objects, Dingo generates a C++ object hierarchy

based on this tree, which can be compiled and linked with

a run-time library to produce an executable implementation

based on the original specification.

2 Development of Tango

Trace Analysis on nondeterministic specifications can be thought

of as a form of state space search, where the search tree con-

sists of nodes (states) and edges (transitions). A trace is

“valid” if there exists at least one “solution” , or a path (se-

quence of transitions), from the root of the tree (initial state)

to a leaf node (another valid state), which generates all of the

interact ions in the trace. If the entire state space in the tree

is searched, and no solution is found, the trace is “invalid”.

Usually, a depth-first search (DFS) strategy is used for trace

analysis, although for parallel or multi-threaded testers with

plenty of memory, a breadth-first strategy might be consid-

ered as a faster alternative [2]. For on-line trace analysis,

simple DFS is not sufficient, as explained further in Sec-

tion 3.

2.1 Input Requirements

A valid Estelle specification for Tango consists of one EFSM

process, or a module, with a fully-defined module body,

to specify the behaviour of the IUT. The current version

of Tango does not support trace analysis of multiple con-

current module specifications, because for our purposes, the

added convenience of multiple-module trace analysis was not

justified by the increase in algorithmic and state-space com-

plexity of such a tool.

The module which specifies the behaviour of the IUT is

called the TAM, or the Trace Analysis Module. It should

be free of “non-progress cycles” 1, as these can foil DFS al-

gorithms, yielding search trees of infinite depth.

The delay statement in Estelle, which is used primarily

to specify timeouts in a specification, is not supported by

1sequences of transitions which consume no input, produce no out-
put, and end up m the same module statetesting.

176

Tango. The reason for this is that Tango trace files do not

contain time stamps, and Tango itself does not keep track

of the simulated time during its depth-first search, Estelle is

not expressive enough to fully specify performance aspects of

a protocol, and implementing a performance model in Tango

was not one of our goals in this project. For more informa-

tion about Estelle performance models, see for instance [3].

2.2 Depth-First Search

DFS performs the following operations, which had to be im-

plemented in Tango-generated TAMs:

● Generate: Generate a list of ail of the fireable transi-

tions from the current state to the next possible states

● Update: Execute a transition

● Save: Save the current state, for later possible back-

tracking

. Restore: Restore a state which was saved earlier, in

such a way that subsequent transition executions would

behave the same way as they would have when the

state was saved.

2.3 TAM States

The state of an Estelle TAM is a composite of the following

information:

● Values of module state variables:

– The Estelle FSM module state, expressed as an

ordhml value

– Global module variables of any size or structure,

as defined in the Estelle specification

– Dynamic memory, which may be allocated or dis-

posed while executing a state transition

● Queue states, to reflect which input and output inter-

actions from the trace file were consumed or produced

at the current state

2.4 Runtime Options

After the initial required features were implemented, various

enhancements were made to the Tango system to make it

more useful in practical applications. These are all referred

to as runtime options, and they are dkcussed briefly here.

2.4.1 Initial State Search

Often, an IUT is executing for a while before a trace is col-

lected, in which case the initial state of the IUT is not known.

Sometimes, it is desired to analyze such traces.

By default, the TAM fires the initialize transition and

then starts analyzing the trace. Tango supports an optional

initial FSM state search. If the trace is found to be invalid

when the TAM begins analysis from the default initial FSM

state, the TAM will backtrack to the point right after the

initial ize transition was taken, choose another initial FSM

state, and begin the analysis again.

It should be noted that when the DFS begins, the TAM

currently assumes that the values of all IUT variables and

dynamic memory are initially left as set by the initialize

transition block. In the event that they were changed in

the IUT before the trace was collected, thk might cause an

“invalid trace” result on a valid trace.

It is computationally impractical to try all possible initial

TAM states. In the case of Estelle, they may be infinite

in number due to the fact that Estelle supports dynamic

memory allocation. In most situations, it is not sufficient

simply to try different initial FSM states, as Tango does.

Another approach for handling partial traces is discussed in

Section 5.

2.4.2 Interaction Relative Order Checking

The order of the interactions, as they appear in the trace

file, can be interpreted in a number of ways. In all cases,

if two interactions going in the same direction through the

same 1P appear in the trace file, the order in which they

appear is observed and checked by the trace analysis tool.

However, the order of interactions which go through differ-

ent IPs, or through the same 1P but in different directions,

can be observed (and checked) or ignored by the TAM,

depending on the runtime options.

In general, enabling these relative order checking options

reduces the state space (and therefore, the search time),

without any sacrifice in the quality of analysis. However,

queues in the IUT can cause Tango to give invalid results

on vflld traces if the trace information was observed before

interactions were placed into a queue.

In the case of full order checking, the inputs and outputs

in the trace file must be in an order in which the inputs can

be consumed and the outputs can be generated by the Estelle

module specification, assuming no input queues. However,

in practice, the IUT that has generated the trace file may

include input and/or output queues associated with the dif-

ferent IPs observed. The presence of these queues may lead

to an order of the interactions in the trace file which is not

compatible with the simple Estelle specification (assuming

no queues).

For instance, if separate input queues are present for dif-

ferent IPs, the relative order of trace inputs pertaining to

different IPs is of no relevance, and hence, should be ignored.

Similarly, if the output interactions from different IPs travel

through different queues before being recorded in the trace,

the relative order of outputs pertaining to different IPs is

of no relevance, and should be ignored as well. Finally, for

any given 1P, if an input or output queue is present in the

implementation, it is possible that an input which appears

in the trace file before an output, passing through the same

1P, is actually consumed after the output is generated by the

IUT. In this case, the relative order of inputs with respect

to outputs is of no relevance.

Therefore, depending on the degree of observability of

the IUT, not all of the relative order checking options below

are applicable.

Inputs with respect to outputs: Ensures that the next input

consumed by a transition precedes any other output

interaction at the same 1P in the trace. Thk option

should be used under most circumstances.

Outputs with respect to inputs: Ensures that the next out-

IP

‘put generated by a transition precedes any other input

interaction at the same 1P in the trace. This option

should not used if the implementation that generated

the trace includes an input queue for the 1P in ques-

tion.

relative order checking: Ensures that the next input

consumed by a transition precedes any other input in

177

the trace, and that any output generated precedes any

other output in the trace. This option should not be

used if the implementation that generated the trace

includes input or output queues.

There is a special case handled by Tango when this

option is used. If there are multiple outputs sent to

different IPs in a single transition block, then Estelle

semantics do not specify the actual order these outputs

should be generated. Therefore, if the order of these

outputs is permuted in the trace, it is still considered

a vahd trace.

It is clear that the presence of the input and output

queues in the implementation reduces its observability. These

issues are discussed in more detail in [6]. However, it is im-

portant to note that the use of order checking during the

trace analysis significantly reduces the state space of the

search, because most non-spontaneous transitions become

deterministic. Under many situations, using the relative or-

der checking options will yield linear-time trace analysis exe-

cutions with respect to the length of the trace, as we explain

in Section 4. Therefore, if it is possible to observe inputs

after they exit, and outputs before they enter queues, using

these options will improve performance significantly.

2.4.3 Disabling an 1P

Disabling an 1P means that outputs sent through that 1P

during the trace analysis are not checked, but always con-

sidered valid. This feature may be useful when the trace

itself dld not include output observations made at certain

IPs, due to practical problems of observability.

While it is possible with thk option to use Tango to

perform trace analysis when not all outputs from the IUT

are available, all input interactions arriving at the IUT are

needed for a TAM to perform trace analysis, if they affect

the observable behaviour of the implementation. This may

be considered a significant Imitation of Tango, as there are

situations where the inputs arriving at some of the IPs of

the IUT are not observable, and it is still desired to perform

a trace analysis on the interactions passing through other

IPs of the IUT. Section 5 discusses some of the problems

involved in implementing partial trace analyzers.

3 On-Line Trace Analysis

When a trace analyzer runs on-line, it receives interactions

from an IUT while the IUT is executing. Such a program

is expected to be able to verify incoming interactions as fast

as they arrive. In addition to the speed issue, on-line nonde-

terministic trace analysis involves a search algorithm which

is more sophistical ed than DFS, to prevent cases where the

TAM is indefinitely waiting for more input to arrive at a

particular 1P, while the solution may exist elsewhere in the

search tree.

Tango generates trace analyzers which implement a multi-

threaded depth-first search algorithm, to provide a means for

on-line trace analysis. This section will describe some of the

design issues and implementation details, but more details

can be found in [7].

The way Tango handles on-line trace analysis is by treat-

ing the trace file as a “dynamic” trace file. A dynamic trace

file is one that can grow during the trace analysis, while a

static trace file is one which does not grow, and therefore,

can be loaded into memory before the search begins. At any

time, another process independent of Tango can append data

to a dynamic trace file, which the TAM must check period-

ically for more data to read. This should make it very easy

to interface a Tango trace analyzer with another program

that collects trace data from an IUT.

Hereafter, when a TAM is performing on-line trace anal-

ysis, we will say that it is running in dynamic mode, to

dktinguish it from a TAM which is only reading static trace

files, which we would say is running in static mode.

3.1 Multi-Threaded Depth-First Search

In on-line trace analysis, when a TAM has encountered the

end of input interactions for a particular 1P, the trace an-

alyzer has two choices. It can wait indefinitely for a new

input to arrive, or it can “mark” the current state as a state

which needs to be checked again, and continue searching

other paths in the tree. The former technique allows one

to continue using standard DFS, and may be a reasonable

one to use for certain specifications with only one 1P, but an

indefinite delay is not acceptable if there are interactions to

consume and check which are waiting in the queues of other

IPs.

ip A,B;
state S1, S2;

trans

from S1 to

begin

from S1 to

begin

from S2 to

begin

S1 uhen A.x name Tl:

end;

S2 when A. x name T2:

end;

S1 when B.y name T3:

output A. ack; end;

Figure 1: Pseudo-Estelle specification ack

Imagine that the TAM is performing on-line trace anal-

ysis using our specification ack in Figure 1. Suppose that

the inputs arrived from our IUT at A and B were [x x x]

and [y] respectively, and the only output traced so far was

[ack]. Logically, we can see that our IUT at some point de-

cided to take T2 when it consumed one of the x interactions

from A. However, if our trace analyzer decided to fire T1

three times, consuming all of the interactions arriving at A,

it would arrive at a state in the search tree with no possible

next transitions to fire, and the output [ack] would not have

been verified, nor would the input [y] have been consumed

by the TAM.

At this point, if the TAM were performing regular DFS

(waiting indefinitely for new input to arrive) and no new

inputs arrived, the trace analysis would deadlock.

If the TAM decided to backtrack and analyze other paths

in our search tree, it would validate the trace upon execution

of the following transitions: T1, T2, T3, T 1. However, in the

general case, it is not reasonable to assume that a complete

solution exists elsewhere in the search tree, and it is possible

that the solution began with the transition sequence which

was reached earlier. Therefore, it is necessary to save such

states, so the TAM can analyze them again when new input

arrives.

Thk technique will hereafter be referred to as “Multi-

Threaded Depth-First Search”, or MDFS, and is implemented

in the current version of Tango. MDFS is similar to standard

DFS except that at certain stages in the search, it might be

necessary to save a state, and analyze it again later. Each

saved state represents a “thread” in the search, which may

178

lead to a solution at a later time in the analysis. The high-

level algorithm is described in the next subsections.

3.1.1 Description of Basic MDFS

If an input queue is empty during the generate operation,

this means that from the current state, some of the transi-

tions which may have been fireable if input were available,

will not be fireable until new input arrives. In this situation,

the transition list is considered “incomplete”. Hereafter, a

node in the search tree with an incomplete transition list

will be referred to as a ‘{partially generated node”, or a PG-
node for short. After all of the possible transitions which

were generated from a PG-node are searched, it is necessary

to save the PG-node for analysis later.

When the rest of the search tree is exhausted, PG-nodes

will be the only ones left to search. The oldest PG-node in

the tree will be the next state to be analyzed. A re-generate

operation will be performed on the state, to determine if ad-

ditional transitions are fireable. If additional transitions ex-

ist, they will be searched at this point. If some input queues

are still empty in this state, the node is still considered PG,

and will be saved for analysis again later.

3.1.2 Termination Conditions

As long as a PG-node exists in the search tree, MDFS will

never terminate. This is because a PG-node needs to be

checked again later to determine if there are additional fire-

able transitions from that state, arising from the arrival of

new input.

For traces which contain no invalid interactions, there

will always be PG-nodes in the search tree. Therefore, MDFS

will never terminate with a valid result.

If one of the PG-nodes represents a state where all inputs

were consumed and all outputs were verified, the node is

called a Partially Generated All-Verified node, or PGAV-
node for short. If such a node exists in the search tree, this

means that the trace is “valid” so far2

The TAM may output an “invalid” result, but this will

happen only if all of the possible transition sequences are

searched, and no PG-nodes remain in the search tree. This

can happen only if invalid interactions exist at points in the

trace early enough to prevent the consuming or producing

of all available inputs or outputs in one of the queues.

So what does it mean if the TAM is cycling through a set

of PG-nodes, none of which are PGAV nodes? None of these

states have consumed/verified all of the inputs foutputs, but

when new input arrives, there might be more transitions to

search. Does this mean that the trace is valid so far?

The answer is “maybe”. Consider a specification ip3’,

which is like the one in Figure 2, except that only transitions

t 1, t2 and t 3 are defined. Imagine that the trace collected

so far contains one input from A, x, and one output to A, o.

The interaction o will never be generated by our specification

ip3’. However, the TAM can still non-det erministicall y con-

tinue consuming and verifying data interactions which pass

through IPs B and C until no more input and output trace

21t might be acceptable, when a PGAV node is found, to go through

the search tree and remove all nodes which are not PG AV nodes. In
a sense, this is like breaking the trace into smaller pieces, viewing
the frsgmento which were analyzed m far w “ piccewise valld” and
viewing the remaining parts ss unanalyzed partial traces. This would
have the effect of reducing the time and memory required for a search.
However, it is possible that Tsngo will give an invalid result on a valid
trace, and the frequency oft his kind of result depends on the protocol.
One might Find that the tradeoff is justified in some circumstances.

ip A, B,C;

state sl, 52

trans

fron

frofn

from

from

from

S1 to S1 vhen

begin output

S1 to S1 rfhen

beg in output

S1 to S1 uhen

begin output

S1 to S2 vhen
begin end;

52 to SI vhen

B.data nasre tl:

C.data; end;

C.data name t2:

B.data; end;

A.x name t3:

A.p; end;

B .f inished name t4:

A.x name t5:

begin output A.o end;

Figure 2: Pseudo-Estelle specification, ip3

data is available for those IPs. When this happens, some

PG-nodes exist, and MDFS will indefinitely cy~le through

them, waiting for more input to arrive at B or C, even though

interaction o is invalid. As each new data interaction arrives

for B or C, it is analyzed and verified, and the TAM contin-

ues waiting. In this situation, an invalid trace is not detected

by the TAM running MDFS.

Now consider the specification ip3 where all the transi-

tions in Figure 2 are defined. Here, we can see that once

an interaction finished arrives at B, then t4 is fired, the

module enters S2, o can be verified, and the trace will be

vaEd.

Popular protocols are not usually written in such a way

that their implementations will leave inputs in queues for a

long time without looking at them. If an input arrives while

the IUT is in a state which is not expecting that input, the

IUT will usually consume the input and send some kind of

result indicating that it was an error. Therefore, situations

like the one described above rarely happen, so practically

speaking, when only PG-nodes which are non-AV exist in

the search tree, this means that the trace is “likely to be

invalid”, but still, no conclusive result can be given.

It is possible that the operator would like to “force” a

termination verdict on the TAM which is executing MDFS,

so thk feature is supported in Tango, by the use of an “end-

of-file” marker in the trace file. Once the TAM is notified

that there will be no more data to arrive in any of its dynamic

trace files, the PG-nodes in the search tree become fully-

generated nodes. At this point, it is possible to exhaust the

search tree and report a conclusive result.

3.1.3 Multi-Threaded DFS with Dynamic Node-Reordering

One disadvantage of using basic MDFS becomes apparent

when analyzing long valid traces of highly nondeterministic

specifications. It is possible that when the end of input is en-

countered, even if for only one of the IPs, the path from the

root of the tree to the current PG-node is a partial solution

(that is, part of a full solution, if one exists) for validat-

ing the trace in progress. In the case where a PGAV-node

exists, it is almost certain that the path from the root to

that node is a partial solution to the full trace analysis. BY
taking PG-nodes, placing them on the top of the tree, and

forcing the TAM to analyze all of the other possible paths,

the TAM might end up searching through a very large tree

before getting back to the PG-nodes.

Since search trees of nondeterministic specifications may

179

grow exponentially in size with the length of the trace to be

analyzed, this could cause the TAM to spend an inordinate

amount of time searching the rest of the tree, which may

or may not contain another partial solution, while the path

which is most likely to be part of the solution will not be

searched until the rest of the search tree is exhausted.

An enhanced version of MDFS incorporates dynamic node-

reordering in the search tree, and solves this problem. Any

time new input arrives, the search tree is reordered so that

PG-nodes are placed at the bottom of the tree, and thus will

be searched immediately after the new input arrives, putting

the rest of the search tree “on hold”. This algorithm was im-

plemented in the current version of Tango.

3.2 Memory Requirements and Performance Problems

3.2.1 Degenerate Cases when using MDFS

Some protocol specifications have multiple IPs of which, dur-

ing a typical test case execution, not all are in use. In such

cases, the unused IPs will have empty queues during the

entire search. Therefore, we encounter a situation where

each state which is generated during the MDFS becomes

a PG-node, and thus must be saved, for possibIe future re-

generation. In this case, MDFS will waste all of the available

memory very quickly.

If it is known before the trace analysis that no inputs

will ever arrive at a particular 1P, using the disable_ip run-

time option will prevent this degenerate MDFS case from

occurring.

However, if the first interaction passing through a par-

ticular 1P arrives very late in the trace analysis, or if the

input queue for that 1P is empty for most but not all of the

time, disabling the 1P is not an option. Still, most of the

nodes searched will be PG-Nodes in MDFS, and saving the

TAM state info for each of them will require large amounts

of memory. Tango is not well suited for on-line analysis of

this particular combination of trace and specification types,

and it is suggested that one uses Tango in static mode under

these circumstances.

3.2.2 Dynamic Memory in Specifications

The saving and restoring operations on dynamic memory

during MDFS require substantially more memory and CPU

time than they do in standard DFS, and may cause signif-

icant performance degradation during on-line trace analy-

sis. It is suggested that a K]ghly nondeterministic Tango-

generated trace analyzer which makes heavy use of dynamic

memory be used to analyze static trace files only, or that the

specification be rewritten without the use of dynamic mem-

ory for generation of an on-line trace analyzer. The reason-

ing, and the low-level details of dynamic memory state saves

and restores can be found in [7].

4 Practical Results

The current version of Tango has been tested on TPO, the

“Class O Transport Protocol”, a specification of an OS I trans-

port layer, for networks with very reliable network layers,

and the LAPD protocol, also known as CC ITT Recommen-

dation Q.921, for the Link Layer of an ISDN. These experi-

ments were performed on SUN 4 with 32Mb of memory.

One way of measuring the performance of a Tango-generate,

trace analyzer is in terms of transitions per second, or the

number of edges searched in the search tree per CPU second.

This value depends on many factors, such as the amount

of memory used by variables and dynamic records, the fre-

quency of backtracking, and the number of transition decla-

rations in the TAM’s specification. For simple test-specification

with under 10 transition declarations, TAMs can search up

to 250 transitions per second. For a slightly more interesting

specification like TPO (19 transition declarations), the TAM

can search between 40 and 60 transitions per second. How-

ever, while analyzing traces of behemoth-like specifications

such as LAPD (over 800 transition declarations), a TAM can

take a second to search only 10 transitions.

4.1 LAPD

Using the LAPD specification developed at CNET [15],

we used Tango to generate an implementation. We executed

thk implementation 7 times, to collect 7 valid traces. Each

trace differs from each other by the number of data packets

sent from the User module (layer 3) to the LAPD module

(laver 2).

‘ “We ~hen generated a trace analyzer based on the same

specification, and ran it four times on each of these obtained

traces, using different relative order checking options each

time. The execution results can be found in Figure 3.

As indicated by our results, trace analysis was signifi-

cantly faster when we enabled relative order checking op-

tions. This is because many nondeterministic choices be-

came deterministic ones, thereby reducing the state space of

the search.

One problem we encountered when analyzing LAPD traces

is that often, it is desired to analyze only the packets trans-

mitted at the lower interface of the LAPD module, between

the LAPD module and the physical line, because the in-

teractions passing between the user module and the LAPD

module are not necessarily observable. The current version

of Tango could analyze such traces based on a modified pro-

tocol specification which includes only the interactions at

the lower interface, but another approach to this problem is

discussed in Section 5, on partial trace files.

4.2 TPO

The performance of a Tango-generated trace analyzer de-

pends on many factors, such as the length of the trace data,

the degree of nondeterminism in the specification, and, in the

cases of highly nondeterministic specifications, the “luck of

the draw”. Often, the time required to analyze a valid trace

is proportional to the length of the trace to be analyzed,

but the time required to analyze an invalid trace where the

first n interactions are valid, depends more on the degree of

nondeterminism in the specification, and can be exponential

with respect to n.

For example, the TPO specification defines a module which

communicates with two other modules, an “upper tester”

and a “lower tester”. The lower module represents the net-
work layer, while the upper module represents the user layer.

When a data interaction from one module is received by

TPO, it is saved into a buffer of “infinite” length and, at some

later time, sent along to the other module. The specification

enters a state known as data after the initial handshaking is

complete between the modules above and below it. At this

point, the upper and lower modules can simultaneous y send

data to each other. To summarize, from the data state, TPO

can do the following:

● T 13: If available, read a data interaction from the up-

per module, and place it into buffer2.

180

Key:

DI

CPUT
TE
RE
SA
GE
NR
IO
1P
FULL

DI I CPUT TE GE RE SA

5

10

15

25
50

75
100

5
10

15
25

50
75

5
10

15
25
50
75
100

5

10
15

25

50
75
100

4.1 34 21 15 17

7.6 64 36 30 32

11.0 94 51 45 47

18.4 154 81 75 77

34.4 284 148 138 144

52.2 414 215 201 211

71.7 579 296 285 292

IO
2.9 28 19 9 13

5.5 53 34 19 28

10.9 78 49 29 43

16.3 128 79 49 73

30.8 237 146 91 140

50.7 346 213 133 207

62.8 483 294 189 288

CPUT TE GE RE SA
1P
1.6 24 19 5 7

3.0 44 34 10 17

5.0 64 49 15 29

7.7 104 79 25 46

13.3 192 146 46 95

21.0 280 213 67 135

30.2 389 294 95 191

FULL
0.7 20 19 1 3

1.6 35 34 1 8

2.3 50 49 1 15

3.5 80 79 1 22

6.8 147 146 1 50

9.5 214 213 1 69

12.8 295 294 1 97

of data interactions sent by the

User module to LAPD module

CPU time, in seconds

Transitions executed during search

Restores, or backtracks pe~ormed during search

Number of State Saves during search

Number of Generates during search

Relative Order Checking Disabled

I/Oand O/I relative order checking only

IP relative order checking only

All relative order checking options enabled

Figure 3: Execution times of a TAM on LAPD traces of

various sizes

T14: If nonempty, send an interaction from buffer2

to the lower module.

T15: If available, read a data interaction from the

lower module, and place it into bufferl.

T16: If nonempt y, send an interaction from buff erl

to the upper module.

T17: If a disconnect request is received from the up-

per module, send a disconnect indication to the low&

module.

Imagine a trace to be analyzed which contains the initial

handshaking, followed by 20 interactions sent from the lower

module and 20 interactions sent from the upper module. To

analyze this trace, the search tree depth would beat least 80,

because each interaction (there are 40) sent from one end to

the other requires the TPO to read/enqueue (one transition)

and dequeue/output (one transition).

During most of the analysis, the TPO module is in the

data state, and from this state there will be usually at least

two, and sometimes as many as four of the above transitions

which are fireable.

A quick calculation will show that if there were, on av-

erage, only 2.4 transitions fire able from each data state 3, a

search tree of depth 80 would contain 2.6 x 1030 transitions.

At 150 transitions per second, it could take 4.8 x 1020 years

to analyze an invalid trace!

This problem arises from the fact that a trace which has

a bad or missing interaction near the end of it gives rise to an

exponential number of “partial solutions”, each one causing

the trace analyzer to search very deeply into the tree before

encountering the bad or missing interaction.

For vaiid traces, however, it should be apparent that tak-

ing any sequence of transitions (T13 through T16) which

consume input when available from the IPs, and output in-

teractions when available from the TPO queues, would even-

tually consume all inputs and verify all outputs. In other

words, there are an exponential number of solutions with

respect to the length of the trace, and finding one of them

requires no backtracking. Therefore, the search time would

be linear with respect to the length of the trace.

A logical question to ask might be: if the order of these

transitions does not matter, how can we avoid checking all of

the possible permutations? In fact, it is impractical to ana-

lyze long invalid traces of specifications such as TPO without

having an answer to this question. Perhaps what is neces-

sary is some form of control and data flow-analysis which

would show that taking one permutation of transitions is

equivalent to taking a class of others. This would provide a

means to “trim” the search tree before or during analysis.

It would be interesting to determine whether the methods

developed for the verification of specifications [19] are ap-

plicable in thk context. Another useful approach might be

to keep information about which states were reached during

the search in a hash table, to prevent the analysis of the

same state twice.

The results of executing a TAM on invalid TPO traces

are shown in Figure 4. The first trace contains three data

interactions sent by the upper tester, and three sent by the

lower tester, and was obtained by executing Tango in imple-

mentation generation mode. One parameter in the last data

interaction of the trace file was edited slightly to cause a mis-

match. The same trace was analyzed four times, each time

3This is the average fanout in a Tango search tree of depth 13
analyzlng TPO

181

Depth RC M CPUT TE GE RE SA
13 None 1469.5 88329 36687 51642

13

34440

IO and 01 1.3 173 104 69 69
13 1P onlv 6.7 984 495 489 428
i3 --FM “ 0,9 173 104 69 69
21 Full 321 4021 2258 1763 1763

29 FMl 2658 122202 65575 56627 56627

Depth = Depth of search tree

RCM = Relative Checking Mode

Figure 4: Execution times of a TAM on invalid TPO traces

using different relative order checking option combinations.

After this, longer invahd traces were generated in a similar

fashion and analyzed using full relative order checking.

If relative order information on the interactions in the

trace file is available to the tester, enabling the Tango rel-

ative order checking options will force the TAM to analyze

only the transition sequences which have “progress” transi-

tions appearing in the same order as the interactions they

consume or produce in the trace. In effect, the TAM will

eliminate permutations of observable and input-consuming

transitions from the search tree. In the case of TPO, there

are no non-progress transitions, but when analyzing traceg

where only the last data interaction is invalid, there are

still some nondeterministic possibilities near the leaves of

the search tree. This is because after receiving a disconnect

request, TPO can output a disconnect indication at any time,

even if data remains in its buffers. In other words, t 17, be-

comes fireable from the data state, in addition to the other

transitions described above. Enabling full relative checkhg

on these invalid traces reduced the average fan out from 2.6

to 1.5 on the search trees we were able to measure, but it

should be noted that the fanout would be very close to 1 if

the invalid data interaction was early enough in the trace to

prevent t 17 from becoming fireable anywhere in the search

tree. Thus, in our example, while the search time is still

exponential with respect to the length of the trace, searches

are significantly faster, and in the general case, will usuall~

(but not always) take linear time with respect to the length

of the trace.

5 Analysis of Partial Traces

For the muwoses of this paper, a Dartial trace has one or

both

1.

2.

of the following properties:

It begins with trace data from an IUT which is not

necessarily in its initial state.

It does not contain input interactions passing through

one or more of the IPs which are used by ~he TA-M

based on the IUT.

Analysis of a partial trace file introduces a plethora of

unknowns, making analysis significantly more difficult. In

the case where the initial module state is unknown, certain

variables will be uninitialized, and in the event that their

values are used to determine the behaviour of the TAM, the

valkiity of any such behaviour is questionable.

In the case where inputs passing through one or more of

the TAM’s IPs are not supplied by the trace file, the TAM

must consider all possible transitions which consume any in-

teraction from these IPs. If an “unknown” interaction has

parameters, the values of the parameters are unknown. If

the values of unknown parameters are used in parameters

of output interactions which must be checked, a true “com-

parison” of these interactions to the traced interactions is

not possible. Furthermore, the average number of fireable

transitions from each state will be very high, giving rise to

an exponential state space growth.

The implementation of a partial trace analyzer generator

requires the addressing of the above problems. An approach

to analyzing partial traces is discussed in thk section.

5.1 Undefined Variables

Since all Estelle variables are translated into C++ objects,

adding an “undefined” attribute to each object is relatively

straightforward. The constructors of such objects will ini-

tialize this attribute to true, and all assignment operators

must set it to false (unless, of course, they are assigned to

be equal to other undefined variables or values).

For all transitions which have provided firing rules, each

boolean expression in the provided clause which tests the

value of an undefined variable is assumed to be true. For the

purpose of comparing generated interactions to traced inter-

actions, parameters of interactions with undefined values are

“equal” to all values to which they are compared.

5.2 Undefined Input Queues

Undefined queues have the following properties:

●

●

●

5.3

When determining if all inputs have been consumed,

an undefined queue is assumed to be empty.

If a transition has a when clause which is true if an

undefined 1P has a particular interaction in its queue,

then the when clause is evaluated to true. Before the

transition can be fired, a new interaction must be cre-

ated, of the type defined in the when clause, with all

its parameter values set to undefined.

The actual queue associated with the undefined 1P is

always empty, and does not need to be saved or re-

stored during backtracking.

Control Statements

Some features of Estelle make it impossible to perform a

full analysis of partial trace files. If we restrict ourselves

to a subset of the Estelle language, which does not support

control statements, our problem becomes tenable.

Estelle’s control statements are while, for, repeat, case

and if \then/el se. Each of these statements requires the

comparison of a variable to a value, and the execution of

different statements depending on the comparison result. If

the variable to be compared is undefined, thk can mean that

multiple possible paths of execution exist. Where loops are

involved, these paths may be infinite in number. In theory,

a proper trace analyzer must attempt all possible execution

paths to search the entire state space, but because the state

space is infinite, supporting loops is impractical.

Applying a straightforward transformation of the speci-

fication into a “normal form” [16] which eliminates case and

if/then/else statements by adding states and transitions to

the specification, will simplify the problem of partial trace

file analysis, and allow Tango to analyze partial traces of

specifications which do use these constructs.

Fortunately, most Estelle specifications make very infre-

quent uge of loops and conditionals, so in theory, it should

182

be possible to perform partial trace analysis on most Es-

telle specifications without requiring too much in the way of

modification.

5.4 Other Problems

There are still some other problems associated with partial

trace analysis which must be addressed. For example, DFS

will be foiled by the existence of transition cycles which only

read input from unobservable IPs. If we were analyzing a

TPO trace where one of the IPs was unobservable, a possi-

ble execution path would be to repeatedly fire the transition

which reads and enqueues input from that unobservable 1P,

yielding a search tree of infinite depth. Another problem

arises from the use of an undefined variable as an array in-

dex, especially in an array of interaction points. This situ-

ation could arise during the analysis of a de-multiplexer, or

a router, where an input 1P is unobservable. In this situa-

tion, an incoming undefined interaction parameter specifies

the destination 1P of the next output, which normally must

be known for a comparison of generated output to traced

output. There may be other problems similar to the ones

mentioned above which will make partial trace analysis of

some specifications very difficult, if not impossible.

6 Conclusions

In this paper, the steps required to transform an implemen-

tation generator into a trace analyzer generator were sum-

marized, and a fully-functional tool called Tango to generate

trace analyzers for single-module Estelle specifications was

described. The results from using this tool on different pro-

tocols were presented, and an approach to analyzing partial

trace files was discussed.

Tango provides a means to analyze traces of any single-

module protocol specified in Estelle, supporting almost a114

of Est elle’s programming constructs. It is efficient with mem-

ory and CPU time, and handles nondeterminism elegantly.

At the same time, Tango can be used to generate implemen-

tations which behave the same way as those generated by

Dingo [17]. The main shortcoming of Tango is its inability

to analyze time-dependent behavior in a specification or an

IUT.

The main difficulty of analyzing execution traces with re-

spect to a given specification is the nondeterminism of the

latter. In this respect, it is important to note that the input

and output queues that may be part of the implementation

under test reduce the observability and give rise to additional

nondeterminism in the order of the observed interactions.

Tango provides options for checking this order as much as

possible. As our practical applications have shown, the non-

determinism in many practical protocol specifications is lim-

ited enough to make backtracking trace analysis efficiently

feasible, at least for vahd traces. For invalid traces, the anal-

ysis is often much more inefficient due to the inherent paral-

lelism which leads to many different interleavings of events

to be explored.

An additional difficulty arises during on-line trace anal-

ysis, where the analysis is performed while the end of the

trace has not yet been reached. This difficulty is due to

the fact that new inputs may occur at different IPs during
the search, and certain execution paths of the specification

may be blocked because of missing interactions at a given

1P, while other execution paths may proceed. This makes

4 with the exception of delay statements

a pure depth-first search strategy impossible. We have de-

fined a so-called multi-threaded depth-first strategy which is

applicable in these cases.

Acknowledgements

The author would like to thank Daniel Ouimet and Alexan-

dre Petrenko for invaluable discussions. This work was sup-

ported by the Hewlett-Packard-NSERC-CITI Industrial Re-

search Chair on Communication Protocols.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

F. Belina and D Hogrefe. “The CC ITT specification and descrip-
tion language SDL” Networks and ISDN Systems, 16, North-

Holland, 1988/89.

0, Bellal, G.v, Bochmann, M. Dubuc, and F, Saba, “Automatic

test result analysis for high-level specifications” Technical Re-

port 800, Department IRO, University of Montreal, 1991,

G .v. Bochmann, D. Ouimet, and J. Vaucher, “Performance sim-

ulation of communication protocols bssed on formal specifica-

tions” Transactions of the Socsety for Computer Szmulatton,

9(4):201–225, December 1992.

T. Bolognesl and E. Brinksma. “Introduction to the 1S0 spec-

ification language, LOTOS” Computer Networks and ISDN

Systems., 14, Elsevier Science Publishers B V (North-Holland),

1987.

R. Cork. “The testing of protocols in SNA products - an

overview” In Proceedings of IFIP WG 6.1 Thtrd Annual Work-

shop on Protocol Speczficat%on, Testzng and Verification, 1983.

R, Dssouli, R. Fournier, and G.v Bochmann, “Distributed ob-

servation and FIFO queues” In Proceedings of the 3rd Interna-

tional Conference on Formal Descrtptton Techniques (FORTE

90). North-Holland, November 1990.

S Alan Ezust. Tango: The Trace Analysts Generator. Master’s

thesis, McGill University, Montreal, Canada, 1995.

D, Hoffman and R. Snodgrass ‘Trace specifications: Methodol-

ogy and models” IEEE Transactions on Software Engzneerzng,

14(9), September 1988.

Gerard J. Holzmann. Des!gn and Va/:datzon of Computer Pro-

tocols Prentice Hall Software Series, 1991

1S0 Recommendation 9074, The Eztended State l%anszt~on

Language (Estelle), 1989

C. Jard and G v Bochmann. “An approach to testing specifica-

tions”. Journal of Systems and Software, 3(4), December 1983,

MC. Kim, S, T. Chanson, and S. T Vuong. “Protocol trace anal-

ysis based on formal specifications” Technical report, University

of British Columbia, Department of Computer Science, 1991,

R. Molva, M. Dlaz, and J. Ayache. “Observer: A run-time check-

ing tool for local area networks” In Proceedings of IFIP WG

6.1 Fzfth Annual Workshop on Protocol Spec;ficat;on, Testtng

and Verrficatzon, 1985

R. Probert “Towards a knowledge-based model for conformance

test results analysw”. In Proceedings of the IFIP WG 6.1 F!fth

International Workshop on Protocol Speczficatson, Testtng and

Ver$ficatton, 1985.

P Riou. Specs ficatton of the ISDN Lsnk Access Protocol for D-

channel (LAPD) CCITT Recommendation Q. 9.21, Centre Na-

tional d’Etudes des Telecommunlcatlons (CNET). Available by

FTP on Iouie.udel.edu in pub/grope/estelle-specs, 1989.

B, Sarikaya, G.v Bochmann, and E. Cerny “A test design

methodology for protocol testing” IEEE Transactions on Soft-

ware Engtneerzng, 13, 1987.

R. Sijelmassi and B. Strausser “The distributed Implementation

generator. an overview and user guude”. Techmcal report, US

Department of Commerce, National Institute of Standards and

Technology, National Computer Systems Laboratory, Systems

and Network Architecture Division, Gaithersburg, MD 20899,

1991.

B. Strausser and J.P. Favreau. qJ~er ~“lde for the NBS protO-

type compiler for estelle” Technical Report ICST/SNA 87/3,

National Institute of Standards and Technology, October 1987.

183

[19] A Valmarl. “A stubborn attack on state space explosion”. In

Workshop on Computer-Aided Vertficatton, DIMACS 90, 1990,

[20] S. T. Vuong, S. Lee, and P. J Zhou, “La validation des tests

de protocole: principles, outils et exemples”. Actes du Collogue
Francophone sur 1 ‘Ing6nter:e des Protocols (CFIP), Montr4al

Canada, 1993.

184

